Fractional-Parabolic Systems
نویسندگان
چکیده
منابع مشابه
Temporal asymptotics for fractional parabolic Anderson model
In this paper, we consider fractional parabolic equation of the form ∂u ∂t = −(−∆) α 2 u+ uẆ (t, x), where −(−∆)α2 with α ∈ (0, 2] is a fractional Laplacian and Ẇ is a Gaussian noise colored in space and time. The precise moment Lyapunov exponents for the Stratonovich solution and the Skorohod solution are obtained by using a variational inequality and a Feynman-Kac type large deviation result ...
متن کاملOn Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملShilov Parabolic Systems
AMS Mathematics Subject Classification (2000): 47D06, 47D60, 47D62
متن کاملPARABOLIC SYSTEMS AND REGULARIZEDSEMIGROUPSQuan
PARABOLIC SYSTEMS 185 such that u = F(F 1u). We de ne u(A) 2 B(X) by (1:3) u(A)x = ZRn(F 1u)( )e i( ;A)x d for x 2 X: De ne MN (FL1) = f(ujk); ujk 2 FL1g. Similarly, MN(Lp) and so on. If u = (ujk) 2 MN(FL1) then u(A) (ujk(A)) 2 B(XN ). It is known that MN (FL1) is a (non-commutative) Banach algebra under matrix pointwise multiplication and addition with norm kukFL1 kF 1ukL1 , where F 1u = (F 1u...
متن کاملA Parabolic Problem with a Fractional Time Derivative
We study regularity for a parabolic problem with fractional diffusion in space and a fractional time derivative. Our main result is a De Giorgi-Nash-Moser Hölder regularity theorem for solutions in a divergence form equation. We also prove results regarding existence, uniqueness, and higher regularity in time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2011
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-011-9243-z